Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.651
Filtrar
1.
J Clin Lab Anal ; 38(7): e25031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514901

RESUMO

BACKGROUND: Primary cilia are static microtubule-based structures protruding from the cell surface and present on most vertebrate cells. The appropriate localization of phospholipids is essential for cilia formation and stability. INPP5E is a cilia-localized inositol 5-phosphatase; its deletion alters the phosphoinositide composition in the ciliary membrane, disrupting ciliary function. METHODS: The EGFP-2xP4MSidM, PHPLCδ1-EGFP, and SMO-tRFP plasmids were constructed by the Gateway system to establish a stable RPE1 cell line. The INPP5E KO RPE1 cell line was constructed with the CRISPR/Cas9 system. The localization of INPP5E and the distribution of PI(4,5)P2 and PI4P were examined by immunofluorescence microscopy. The fluorescence intensity co-localized with cilia was quantified by ImageJ. RESULTS: In RPE1 cells, PI4P is localized at the ciliary membrane, whereas PI(4,5)P2 is localized at the base of cilia. Knocking down or knocking out INPP5E alters this distribution, resulting in the distribution of PI(4,5)P2 along the ciliary membrane and the disappearance of PI4P from the cilia. Meanwhile, PI(4,5)P2 is located in the ciliary membrane labeled by SMO-tRFP. CONCLUSIONS: INPP5E regulates the distribution of phosphoinositide on cilia. PI(4,5)P2 localizes at the ciliary membrane labeled with SMO-tRFP, indicating that ciliary pocket membrane contains PI(4,5)P2, and phosphoinositide composition in early membrane structures may differ from that in mature ciliary membrane.


Assuntos
Cílios , Monoéster Fosfórico Hidrolases , Cílios/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Humanos , Linhagem Celular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas CRISPR-Cas , Fosfolipídeos/metabolismo
2.
Front Biosci (Landmark Ed) ; 28(7): 148, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37525909

RESUMO

BACKGROUND: N6-methyladenosine (m6A) participates in diverse physiological processes and contributes to many pathological conditions. Epithelial-mesenchymal transition (EMT) of retinal pigmental epithelial (RPE) cells plays an essential role in retinal-related diseases, and transforming growth factor ß2 (TGF-ß2) is known to induce EMT in vitro. However, the effect of TGF-ß2 on m6A methylation in RPE cells is not yet known. METHODS: RNA-seq and MeRIP-seq were performed to analyze changes at the mRNA and m6A levels after TGF-ß2 treatment of human ARPE-19 cells. mRNA levels and total m6A levels were subsequently validated. RESULTS: Sequencing revealed 929 differentially expressed genes and 7328 differentially methylated genes after TGF-ß2 treatment. Conjoint analysis identified 290 genes related to microtubule cytoskeleton, focal adhesion, ECM-receptor interaction, cell division, cell cycle, AGE-RAGE, PI3K-Akt and cGMP-PKG pathways. Further analysis revealed that 12 EMT-related genes were altered at the mRNA and m6A levels after TGF-ß2 treatment (CALD1, CDH2, FN1, MMP2, SPARC, KRT7, CLDN3, ELF3, FGF1, LOXL2, SHROOM3 and TGFBI). Moreover, the total m6A level was also reduced. CONCLUSIONS: This study revealed the transcriptional profiling of m6A modification induced by TGF-ß2 in RPE cells. Novel connections were discovered between m6A modification and TGF-ß2-induced EMT, suggesting that m6A may play crucial roles in the EMT process.


Assuntos
Adenosina , Transição Epitelial-Mesenquimal , Epitélio Pigmentado da Retina , Fator de Crescimento Transformador beta2 , Humanos , Fator de Crescimento Transformador beta2/farmacologia , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , RNA-Seq , Metilação , Adenosina/análogos & derivados
3.
Biochem Biophys Res Commun ; 658: 88-96, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37027909

RESUMO

Renewal of retinal photoreceptor outer segments is conducted through daily shedding of distal photoreceptor outer segment tips and subsequent their phagocytosis by the adjacent retinal pigment epithelium (RPE) monolayer. Dysregulation of the diurnal clearance of photoreceptor outer segment tips has been implicated in age-related retinal degeneration, but it remains to be clarified how the circadian phagocytic activity of RPE cells is modulated by senescence. In this study, we used the human RPE cell line ARPE-19 to investigate whether hydrogen peroxide (H2O2)-induced senescence in ARPE-19 cells alters the circadian rhythm of their phagocytic activity. After synchronization of the cellular circadian clock by dexamethasone treatment, the phagocytic activity of normal ARPE-19 cells exhibited significant 24-h oscillation, but this oscillation was modulated by senescence. The phagocytic activity of senescent ARPE-19 cells increased constantly throughout the 24-h period, which still exhibited blunted circadian oscillation, accompanied by an alteration in the rhythmic expression of circadian clock genes and clock-controlled phagocytosis-related genes. The expression levels of REV-ERBα, a molecular component of the circadian clock, were constitutively increased in senescent ARPE-19 cells. Furthermore, pharmacological activation of REV-ERBα by its agonist SR9009 enhanced the phagocytic activity of normal ARPE-19 cells and increased the expression of clock-controlled phagocytosis-related genes. Our present findings extend to understand the role of circadian clock in the alteration of phagocytic activity in RPE during aging. Constitutive enhancement of phagocytic activity of senescent RPE may contribute to age-related retinal degeneration.


Assuntos
Senescência Celular , Ritmo Circadiano , Fagocitose , Epitélio Pigmentado da Retina , Humanos , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Dexametasona/farmacologia , Peróxido de Hidrogênio/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
4.
Acta Ophthalmol ; 100 Suppl 273: 3-59, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36343937

RESUMO

Age-related macular degeneration (AMD) is an eye disease, which causes impaired vision that can lead to blindness. The incidence of AMD increases with age. Retinal pigment epithelial (RPE) cells maintain retinal homeostasis and support the functionality of photoreceptors. In the pathogenesis of AMD, the degeneration of the RPE cells precedes photoreceptor cell death. RPE cells are susceptible to oxidative stress, and chronic inflammation involving nucleotide-binding domain, leucine-rich repeat and pyrin domain 3 (NLRP3) inflammasome activation and impaired autophagy are challenges faced by aged RPE cells in AMD. There are two types of AMD, dry (85-90%) and wet (10-15%) disease forms. Choroidal neovascularization is typical for wet AMD, and anti-vascular endothelial growth factor (anti-VEGF) injections are used to prevent the progression of the disease but there is no curative treatment. There is no cure for the dry disease form, but antioxidants have been proposed as a potential treatment option. Ageing is the most important risk factor of AMD, and tobacco smoke is the most important environmental risk factor that can be controlled. Hydroquinone is a cytotoxic, immunotoxic, carcinogenic and pro-oxidative component of tobacco smoke. The aim of this PhD thesis was to study hydroquinone-induced oxidative stress and NLRP3 inflammasome activation in human RPE cells (ARPE-19 cells). An age-related eye disease study (AREDS) formulation (incl. omega-3 fatty acids, vitamin C and E, copper, zinc, lutein and zeaxanthin), which is clinically investigated p.o. dosing combination of dietary supplements for AMD patients, has been evaluated as a possible treatment and restraining option for AMD. Resvega (4.1.1, Table 2) is a similar kind of product to AREDS with added resveratrol, and many of the components incorporated within Resvega can be considered as belonging to the normal antioxidative defence system of the retina. Another aim was to evaluate the effects of Resvega on hydroquinone-induced oxidative stress or NLRP3 inflammasome activation induced by impaired protein clearance. The results of this study reveal that hydroquinone elevated the activity of NADPH oxidase which subsequently mediated the production of reactive oxygen species (ROS) and predisposed RPE cells to degeneration by reducing levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Hydroquinone induced an NLRP3-independent IL-18 release and NLRP3 accumulation inside the IL-1α-primed cells. Resvega treatment reduced the extent of hydroquinone-induced ROS production and NLRP3 inflammasome activation evoked by impaired protein clearance. Thus, Resvega alleviated hydroquinone- and impaired protein clearance-induced stress in human RPE cells, but more studies are needed, for example, to reveal the most optimal route of administration for targeting the cells in the retina, since both oxidative stress and NLRP3 inflammasome activation are important contributors to the development of AMD and represent significant treatment targets.


Assuntos
Células Epiteliais , Estresse Oxidativo , Poluição por Fumaça de Tabaco , Degeneração Macular Exsudativa , Humanos , Antioxidantes/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Hidroquinonas , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Poluição por Fumaça de Tabaco/efeitos adversos , Degeneração Macular Exsudativa/metabolismo
5.
Int Immunopharmacol ; 110: 108893, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978498

RESUMO

Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM) that can cause visual impairment and blindness. Inflammation plays a critical role in its development and progression. Retinal pigment epithelium (RPE) cells secrete inflammatory factors that modulate ocular immune response. However, it is unclear how diabetes regulates the expression of inflammatory factors in RPE cells. In this study, streptozocin (STZ) was applied to induce diabetic alterations in the retinas of mice, and RPE cells were further purified to profile gene expressions. The IL-17 signaling pathway was the most significantly enriched and the only enriched inflammation pathway in the profile via KEGG analysis. IL-17A induced the expression of targeted genes, which was enhanced by high glucose levels, suggesting a synergistic effect of IL-17A and high glucose. High glucose did not affect the mRNA stability of IL-17A-targeted genes or the activity of IL-17A signaling transduction, but it boosted the histone acetylation on IL-17A-targeted genes. Curcumin, an inhibitor of histone acetyltransferase, abolished high glucose-enhanced histone acetylation of IL-17A-targeted genes and blocked the promotion of high glucose levels on gene expression induced by IL-17A. In conclusion, high glucose levels promote IL-17A-induced gene expression via histone acetylation in RPE cells.


Assuntos
Glucose/metabolismo , Interleucina-17/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Acetilação , Animais , Retinopatia Diabética/metabolismo , Expressão Gênica , Histonas/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/citologia
6.
J Biol Chem ; 298(9): 102286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868562

RESUMO

In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.


Assuntos
Diferenciação Celular , Mitocôndrias , Niacinamida , Epitélio Pigmentado da Retina , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
7.
Exp Eye Res ; 222: 109158, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780904

RESUMO

Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-ß1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, Western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-ß1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-ß1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Células Epiteliais/metabolismo , Fibrose , Humanos , Epitélio Pigmentado da Retina/citologia , Fator de Crescimento Transformador beta1/farmacologia
8.
Clin Immunol ; 241: 109080, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878734

RESUMO

OBJECTIVE: Uveitis is an intraocular inflammatory disease. Epigenetics has been associated with its pathogenesis. However, the role of N6-methyladenosine (m6A) in uveitis has not been reported. We aimed to examine the role of m6A and its regulatory mechanism in experimental autoimmune uveitis (EAU). METHODS: The mRNA expression of m6A-related methylase and demethylase of retinal pigment epithelium (RPE) between mice with EAU and control mice was detected by RT-qPCR. The overall m6A level of ARPE-19 cells was detected by an m6A quantitative detection kit. Cell proliferation was observed by CCK-8 assays, and ELISA was used to test the secretion of inflammatory factors. The expression of tight junction proteins and the target genes of FTO were examined by western blotting and MeRIP-PCR. RESULTS: A decreased expression of FTO in RPE cells was found in mice with EAU. Increased overall m6A%, proliferation of cells and secretion of IL-6, IL-8 and MCP-1 were found after FTO knockdown in ARPE-19 cells. However, ZO-1 and occludin protein expression was decreased. ATF4 protein expression was decreased in the FTO knockdown (shFTO) group as compared with the control (shNC) group. In contrast, the m6A level of ATF4 was elevated, as shown by MeRIP-PCR. Functional analysis showed that p-STAT3 expression was increased in the shFTO group, and the change in occludin expression was reversed in ATF4 rescue experiment. CONCLUSION: FTO may affect the translation of ATF4 by regulating its m6A level, resulting in the increased expression of p-STAT3 and inflammatory factors, and leading to uveitis.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Epitélio Pigmentado da Retina , Uveíte , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Ocludina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Junções Íntimas/metabolismo , Uveíte/genética
9.
Biomolecules ; 12(6)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740973

RESUMO

Dedifferentiation and proliferation of retinal pigment epithelial (RPE) cells are characteristics of retinal diseases. Dedifferentiation is likely associated with changes of inwardly rectifying potassium (Kir) channels. The roles of Kir4.2 channels in viability, and proliferation of cultured RPE cells were investigated. Gene expression levels were determined using qRT-PCR. RPE cells expressed Kir2.1, 2.2, 2.4, 3.2, 4.1, 4.2, 6.1, and 7.1 mRNA. Kir4.2 protein was verified by immunocytochemistry and Western blotting. Kir4.2 mRNA in cultured cells was upregulated by hypoxia (hypoxia mimetic CoCl2 or 0.2% O2) and extracellular hyperosmolarity (addition of high NaCl or sucrose). Kir4.2 mRNA was suppressed by vascular endothelial growth factor (VEGF), blood serum, and thrombin whereas platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and transforming growth factor-ß1 (TGF-ß1) increased it. Hyperosmotic Kir4.2 gene expression was mediated by TGF-ß1 receptor signaling while hypoxic gene transcription was dependent on PDGF receptor signaling. VEGF receptor-2 blockade increased Kir4.2 mRNA level under control, hyperosmotic, and hypoxic conditions. SiRNA-mediated knockdown of Kir4.2 decreased the cell viability and proliferation under control and hyperosmotic conditions. Kir4.2 channels play functional roles in maintaining the viability and proliferation of RPE cells. Downregulation of Kir4.2 by VEGF, via activation of VEGF receptor-2 and induction of blood-retinal barrier breakdown, may contribute to decreased viability of RPE cells under pathological conditions.


Assuntos
Células Epiteliais , Canais de Potássio Corretores do Fluxo de Internalização , Epitélio Pigmentado da Retina , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular , Hipóxia Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Clin Transl Med ; 12(3): e759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297555

RESUMO

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Assuntos
Autofagia , Proteínas do Olho , Células-Tronco Pluripotentes Induzidas , Agregados Proteicos , Retinite Pigmentosa , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Ribonucleoproteínas Nucleares Pequenas
11.
Bioengineered ; 13(3): 4773-4785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139773

RESUMO

The expression of METTL14 is significantly reduced in patients with retinitis pigmentosa (RP). To clarify the significance of the N6-methyladenosine (m6A) RNA modification in RP, we examined phagocytosis, apoptosis, and cell cycle distribution in a human RPE cell line, ARPE-19, following lentivirus-mediated knockdown of METTL14. Differentially expressed genes and changes in m6A level were evaluated by RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq), respectively. The results showed that phagocytosis and proliferation were decreased whereas apoptosis was increased in RPE cells by METTL14 silencing. We found that METTL14 directly regulated m6A level and the expression of MAP2, as determined by RNA-seq, MeRIP-seq, MeRIP quantitative PCR, and the RNA pull-down assay. Additionally, MAP2 could bind to neuronal differentiation (NEUROD)1, a pathogenic gene in RPE-associated diseases. A family member of the YTH domain, (YTHDF)2 was recognized as an m6A reader of MAP2 mRNA. MAP2 overexpression had the same effects as METTL14 knockdown in RPE cells. Thus, METTL14 regulates the expression of MAP2 via the modification of m6A, resulting in the dysregulation of NEUROD1 and pathologic changes in RPE cells. These findings suggest that therapeutic strategies targeting the m6A modification of MAP2 or the METTL14/YTHDF2/MAP2/NEUROD1 signaling axis may be effective in the treatment of RPE-associated ocular diseases.


Assuntos
Metiltransferases , Proteínas Associadas aos Microtúbulos , Epitélio Pigmentado da Retina , Adenosina/análogos & derivados , Adenosina/metabolismo , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA/metabolismo , Epitélio Pigmentado da Retina/citologia
12.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163068

RESUMO

MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of photoreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is impaired in several pathologies, including diabetes. In this study, we investigate whether hyperglycemic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) medium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phagocytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Glucose/efeitos adversos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Epitélio Pigmentado da Retina/citologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , Fagocitose , Fosforilação , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
13.
Oxid Med Cell Longev ; 2022: 2265725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198094

RESUMO

Oxidative stress plays a critical role in age-related macular degeneration (AMD), and epithelial-mesenchymal transition (EMT) is involved in this process. The aim of this study was to investigate the protective effects of luteolin, a natural flavonoid with strong antioxidant activity, on H2O2-induced EMT in ARPE-19 cells. ARPE-19 cells were incubated with H2O2 at 200 µΜ to induce oxidative stress-associated injury. Cell viability assay showed that luteolin at 20 and 40 µM significantly promoted cell survival in H2O2-treated ARPE-19 cells. Luteolin also markedly protected ARPE-19 cells from H2O2-induced apoptosis. Cell migration assay presented that luteolin significantly reduced H2O2-induced migration in APRE-19 cells. EMT in ARPE-19 cells was detected by western blotting and immunofluorescence. The results showed that H2O2 significantly upregulated the expression of α-SMA and vimentin and downregulated the expression of ZO-1 and E-cadherin, while cells pretreated with luteolin showed a reversal. Meanwhile, the assessment of effects of luteolin on the Nrf2 pathway indicated that luteolin promoted Nrf2 nuclear translocation and upregulated the expressions of HO-1 and NQO-1. In addition, luteolin significantly increased the activities of SOD and GSH-PX and decreased intracellular levels of ROS and MDA in H2O2-treated ARPE-19 cells. Meanwhile, we observed that the expression of TGF-ß2, p-AKT, and p-GSK-3ß was upregulated in H2O2-treated ARPE-19 cells and downregulated in luteolin-treated cells, revealing that luteolin inhibited the activation of the AKT/GSK-3ß pathway. However, these effects of luteolin were all annulled by transfecting ARPE-19 cells with Nrf2 siRNA. Our current data collectively indicated that inhibition of luteolin on EMT was induced by oxidative injury in ARPE-19 cell through the Nrf2 and AKT/GSK-3ß pathway, suggesting that luteolin could be a potential drug for the treatment of dry AMD.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Luteolina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antioxidantes/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais/efeitos dos fármacos
14.
EMBO J ; 41(1): e108843, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981518

RESUMO

Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.


Assuntos
Cílios/metabolismo , Septinas/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais
15.
Stem Cell Reports ; 17(1): 173-186, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021041

RESUMO

Oculocutaneous albinism (OCA) encompasses a set of autosomal recessive genetic conditions that affect pigmentation in the eye, skin, and hair. OCA patients display reduced best-corrected visual acuity, reduced to absent ocular pigmentation, abnormalities in fovea development, and/or abnormal decussation of optic nerve fibers. It has been hypothesized that improving eye pigmentation could prevent or rescue some of the vision defects. The goal of the present study was to develop an in vitro model for studying pigmentation defects in human retinal pigment epithelium (RPE). We developed a "disease in a dish" model for OCA1A and OCA2 types using induced pluripotent stem cells to generate RPE. The RPE is a monolayer of cells that are pigmented, polarized, and polygonal in shape, located between the neural retina and choroid, with an important role in vision. Here we show that RPE tissue derived in vitro from OCA patients recapitulates the pigmentation defects seen in albinism, while retaining the apical-basal polarity and normal polygonal morphology of the constituent RPE cells.


Assuntos
Albinismo Oculocutâneo/etiologia , Albinismo Oculocutâneo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Albinismo Oculocutâneo/patologia , Animais , Biomarcadores , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Fenótipo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/ultraestrutura
16.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055111

RESUMO

Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Lipofuscina/química , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , Sobrevivência Celular , Endocitose , Humanos , Luz , Microscopia de Fluorescência , Oxirredução , Fotólise , Epitélio Pigmentado da Retina/química
17.
Stem Cell Reports ; 17(2): 289-306, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35030321

RESUMO

Regenerative medicine relies on basic research outcomes that are only practical when cost effective. The human eyeball requires the retinal pigment epithelium (RPE) to interface the neural retina and the choroid at large. Millions of people suffer from age-related macular degeneration (AMD), a blinding multifactor genetic disease among RPE degradation pathologies. Recently, autologous pluripotent stem-cell-derived RPE cells were prohibitively expensive due to time; therefore, we developed a faster reprogramming system. We stably induced RPE-like cells (iRPE) from human fibroblasts (Fibs) by conditional overexpression of both broad plasticity and lineage-specific transcription factors (TFs). iRPE cells displayed critical RPE benchmarks and significant in vivo integration in transplanted retinas. Herein, we detail the iRPE system with comprehensive single-cell RNA sequencing (scRNA-seq) profiling to interpret and characterize its best cells. We anticipate that our system may enable robust retinal cell induction for basic research and affordable autologous human RPE tissue for regenerative cell therapy.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Reprogramação Celular/efeitos dos fármacos , Dissulfetos/farmacologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Alcaloides Indólicos/farmacologia , Aprendizado de Máquina , Niacinamida/farmacologia , Ratos , Retina/citologia , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Sci Rep ; 12(1): 722, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031635

RESUMO

Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.


Assuntos
Comunicação Celular/genética , Comunicação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Cílios/genética , Cílios/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Epitélio Pigmentado da Retina/citologia , Actinas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Humanos , Microscopia de Interferência , Modelos Genéticos , Podossomos/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Vinculina/metabolismo
19.
J Diabetes Investig ; 13(5): 781-795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34839589

RESUMO

INTRODUCTION: The loss of retinal pigment epithelial (RPE) cells is associated with the etiology of diabetic retinopathy (DR). This study investigated the effects of circular RNA ZNF532 (circZNF532) on apoptosis and pyroptosis of RPE cells. MATERIALS AND METHODS: Blood samples were collected from patients with DR and healthy volunteers. A human RPE cell line ARPE-19 was induced by high glucose (HG) and assayed for cell viability, apoptosis, and pyroptosis. The binding of miR-20b-5p with circZNF532 and STAT3 was confirmed by a luciferase activity assay. A mouse model of diabetic retinopathy was established. RESULTS: CircZNF532 and STAT3 were upregulated but miR-20b-5p was downregulated in the serum samples of patients with DR and HG-induced ARPE-19 cells. Elevated miR-20b-5p or CircZNF532 knockdown enhanced proliferation but reduced apoptosis and pyroptosis of ARPE-19 cells. CircZNF532 sponged miR-20b-5p and inhibited its expression. STAT3 was verified as a target of miR-20b-5p. MiR-20b-5p modulated ARPE-19 cell viability, apoptosis, and pyroptosis by targeting STAT3. Mice with STZ-induced diabetes showed elevated expressions of circZNF532 and STAT3 but decreased the level of miR-20b-5p compared with the controls. Knockdown of circZNF532 inhibited apoptosis and pyroptosis in mouse retinal tissues. CONCLUSION: CircZNF532 knockdown rescued human RPE cells from HG-induced apoptosis and pyroptosis by regulating STAT3 via miR-20b-5p.


Assuntos
Retinopatia Diabética , MicroRNAs , RNA Circular , Epitélio Pigmentado da Retina , Fator de Transcrição STAT3 , Animais , Apoptose/genética , Apoptose/fisiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/genética , Piroptose/fisiologia , RNA Circular/genética , RNA Circular/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
J Ethnopharmacol ; 288: 114886, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-34856359

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Excessive UV irradiation and ROS exposure are the main contributors of ocular pathologies. Pseudobulb of Dendrobium nobile Lindl. is one of the sources of Shihu and has long been used in traditional Chinese medicine as a tonic to nourish stomach, replenish body fluid, antipyretic and anti-inflammation. AIM OF STUDY: This study aimed to investigate whether D. nobile could protect ocular cells against oxidative stress damage. MATERIALS AND METHODS: Retinal-related cell lines, ARPE-19 and RGC-5 cells, were pretreated with D. nobile extracts before H2O2- and UV-treatment. Cell viability and the oxidative stress were monitored by sulforhodamine B (SRB) and SOD1 and CAT assay kits, respectively. The oxidative stress related proteins were measured by Western blotting. RESULTS: Under activity-guided fractionation, a sesquiterpene-enriched fraction (DN-2) and a major component (1) could ameliorate H2O2- and UV-induced cytotoxicity and SOD1 and CAT activity, but not dendrobine, the chemical marker of D. nobile. Western blotting showed both DN-2 and compound 1 protected ARPE-19 cells against UV-induced oxidative stress damage by regulating MAPK and Nrf2/HO-1 signaling. CONCLUSION: Our results suggest D. nobile extract protects retinal pigment epithelia cells from UV- and oxidative stress-damage, which may have a beneficial effect on eye diseases.


Assuntos
Dendrobium/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...